UMass Boston Computer Science

CS450 High Level Languages (section 2)
Accumulators

Monday, October 21, 2024

Logistios
« HW 6 In
Pre-Mor 102+ P em-treen - EBT

« HW 7 out
* Due: Mon 10/28 12pm (noon) EDT
e A TextBox

"] co @ s :
About Store Gmail Images i::

Google

=

Google Search I'm Feeling Lucky

HW Minimum Submission Requirements

e “main” runs without errors
e Tests run without errors

* 100% (Test / Example) “Coverage”
* In “Choose Language” Menu
« NOTE: only works with single files

LA
Dynamic Properties
No debugging or profiling) Debugging and profiling
Debugging @ Syntactic test suite coverage
Populate “compiled_efrectories (for faster loading)
| Preserve stacktrace (disable some optimizations)

Y| Enforce-Tonstant definitions (enables some inlining)
Sydmodules to Run

53 YCoord is either

33 - before target | This code was not run
;3 - 1in target

;3 - after target

;53 - out of scene

(define (PENDING—Note?)
(define (HIT-Note? n) [GIESEQEICEEIECIIDD])

(define (MISSED-Note? n) (MISSED? (Note-state n)))
(define (OUTOFSCENE-Note? n) (OUTOFSCENE? (Note-state n)))
(define out-Note? OUTOFSCENE-Note?)

;5 NEW

;3 A WorldState is a List<Note>

(define (num-Notes w) [@KIgl=3dsln"p])

Last

~ List (Recursive) Data Definition 1

;3 A ListofInt is one of:

55 - empty
;5 - (cons Int ListofInt)

Last

—~ List (Recursive) Data Definition 1: Fn Template

Recursive call matches
recursion in data definition

;3 A ListofInt isjone of:
;5 - empty

;5 7 (cons Int ListofInt)

/)]

;3 TEMPLATE for/list-fn
;3 list-fn : -> 7
(define (list-
(cond Extract pieces of
cond clause for each [(empty? ISt) e compound data
itemization item [(cons? 1st) {first/1lst)

(list-fn (rest lst);.::..]))

Last
/ine

Recursive List Fn Example 1: inc-1ist

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

))

))

(check-equal?
(inc-1list (list 1 2 3))
(list 2 3 4))

; inc-list : ListofInt -> ListofInt
; increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

(inc-1st (rest 1st))

1))

Last

- Recursive List Fn Example 1: inc-1ist

(define (inc-1st 1st)
(cond

;5 inc-1list : ListofInt -> ListofInt
;5 increments each list element by 1

Empty input produces empty output
(look at signature for help if needed)

[(empty? 1st) empty]
[(cons? 1st) (first 1st) e
(inc-1st (rest 1st))]))

Last
[ine

Recursive List Fn Example 1: inc-1ist

))

; inc-1list : ListofInt
;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st) empty]

[else (addl (first 1st))
(inc-1st (rest 1st))]))

-> ListofInt

Call another function to process
(first) (Int) list element

Last

- Recursive List Fn Example 1: inc-1ist

;5 inc-1list : ListofInt -> ListofInt
;5 increments each list element by 1

(define (inc-1st 1st) Figure out how to “combine” with
(cond (rleculrsi;/e.calltresuflt DT
ook at signature for help if neede
[(empty? 1st) empty]

[else (cons (addl (first 1st))
(inc-1st (rest 1st))]))

Last

~ List (Recursive) Data Definition 2

;; A ListofBall is one of:

55 - empty
;5 - (cons Ball ListofBall)

Last

~ List (Recursive) Data Definition 2: Fn Template

Recursive call matches
recursion in data definition?

;; A ListofBall is one of:

55 - empty
;5 - (cons Ball ListofBall)

;5 TEMPLATE for list-fn
;3 list-fn : ListofBall -> ???
(define (list-fn 1st)

(cond Extract pieces of
P compound data?
cond clause for each [(empty. ISt) ceee] . Pou
itemization item? [(cons? 1st) (first 1st)

(list-fn (rest lst)i.::..]))

Last
/ine

Recursive List Fn Example 2: next-world

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

;35 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick
(define (next-world 1lst)
(cond
[(empty? 1st)]
[(cons? 1st) (first 1st) e
(next-world (rest 1st))]))

Last
/ine

Recursive List Fn Example 2:

hext-world

(define (next-world 1lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Empty input produces empty output
(look at signature for help if needed)

[(cons? 1st) (first 1st) e
(next-world (rest 1lst))]))

Last
/ine

Recursive List Fn Example 2: next-world

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball 0 0 1 1)))

;3 hext-world:

(cond

lelse

[(empty? 1lst) empty] Ball

ListofBall -> ListofBall

;3 Updates position each ball by one tick

(define (next-world 1st) Call another function to

process (first) list element?

(??? (first 1st))
(next-world (rest 1st))]))

Last

- Recursive List Fn Example 2: next-world

(define (next-world 1lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Call another function to process
(first) (Ball) list element

[else (next-ball (first 1st))
(next-world (rest 1st))]))

Last

~ Recursive List Fn Example 2:

hext-world

(define (next-world 1lst)
(cond
[(empty? 1st) empty]

;5 hext-world: ListofBall -> ListofBall
;5 Updates position each ball by one tick

Figure out how to “combine” with
recursive call result
(look at signature for help if needed)

[else (cons (next-ball (first 1st))
(next-world (rest 1lst))]))

Last Differences?

-~ Ccomparison 1

;3 1nc-1st: ListofInt -> ListofInt
;3 Returns list with each element incremented
(define (inc-1lst 1st)
(cond
[(empty? 1lst) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1st)))]))

;3 next-world : ListofBall -> ListofBall
;35 Updates position of each ball by one tick
(define (next-world 1st)
(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))

Last
[ine

Abstraction: Common List Function

Make the difference a
parameter of a
(function) abstraction

(define (1st-fnl fn 1lst)
(cond
[(empty? 1st) empty]

[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

Abstraction: Common List Function #1

35 lst-fnl: (?? -> ??) Listof?? -> Listof??
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

Abstraction of Data Definitions

)
)

))

A ListofInt is one of
- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

- empty
- (cons Ball ListofBall)

Abstraction of Data Definitions

)
)

))

A ListofInt is one of

/ parameter

- empty
- (cons Int ListofInt)

)
)

)

: A ListofBall is one of

=

55 A Listof<i§ is one of

5, - empty
;5 - (cons X Listof<X>)

- empty
- (cons Ball ListofBall)

Abstraction: Common List Function #1

NOTE: textbook writes it like this
(both are ok, just follow data definition)

;5 lst-fnl: [X -> Y] [Listof X] -> [Listof Y]
;5 Applies the given fn to each element of given 1lst

;3 lst-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1st)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

Abstraction: Common List Function #1

;5 lst-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Common List Function #1: map

;3 map: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (map fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(map (rest 1st)))]))

(define (inc-1st 1st) (map addl 1lst)
(define (next-world 1st) (map next-ball 1lst)

Another List function: 1st-max

Function design recipe:
1. Name

2. Signature

3. Description

;5 lst-max : Listof<Int> -> Int
;5 Returns the largest number in the given list

Another List function: 1st-max

Function design recipe:
1. Name

2. Signature

3. Description

4, Examples

;5 1st-max : Listof<Int> -> Int
Returns the largest number in the given list

(check-equal?

(Ist-max (list 1 2 3)) 3))

(check-equal?
(1st-max (list)) ?7?))

Another List function: 1st-max

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

;3 lst-max : Listof<Int> -> Int
;5 Returns the largest number in the given list
(define (1lst-max 1lst)
(cond
[(empty? 1st)]
[(cons? 1st) (first 1st) e
(1st-max (rest 1st))]))

Another List function: 1st-max

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

;3 lst-max : Listof<Int> -> Int
;5 Returns the largest number in the given list
(define (1lst-max 1lst)
(cond
[(empty? 1st) ???]
[(cons? 1st) (first 1st) e
(1st-max (rest 1st))]))

Another List function: 1st-max

Function design recipe:
Name

Signature
Description
Examples

Template

Ll RY e =

(cond

;3 lst-max :
;5 Returns the largest number in the given 1list
(define (1lst-max lst init-val)

[(empty? 1st) ???]
[(cons? 1st) (first 1st)

Listof<Int> -> Int

\

Need extra information?

(1st-max (rest 1st)) ..::j))

Design Recipe For Accumulator Functions

When a function needs “extra information”:

1. Specify accumulator:
* Name
 Signature
* Invariant
« A property of the accumulator that is always true

Another List function: 1st-max

;5 lst-max : Listof<Int> Int -> Int
;5 Returns the largest number in the given list

(define (lst-max lst max-so-far)
(cc[)r(1d ty? lst) 277] \Needextrainformation?
empty? 1s PP
[(cons? 1st) (first 1st) ‘e
(1st-max (rest 1st))]))

Another List function: 1st-max

(cond
[(empty? 1lst) ?7?]

;3 lst-max : Listof<Int> Int
;5 Returns the largest number in the given list
;3 accumulator max-so-far :
;3 1lnvariant: is the largest val iq\jst “so far”

-> Int
Int

(define (lst-max 1lst max-so-far)

\

Need extra information?

[(cons? 1st) (first 1st) e
(1st-max (rest 1st))]))

Another List function: 1st-max

;3 lst-max : Listof<Int> Int -> Int
;5 Returns the largest number in the given list
;5 accumulator max-so-far : Int
;5 1lnvariant: is the largest val in 1lst “so far”
(define (lst-max 1lst max-so-far)
(cond /
[(empty? 1st) max-so-far]
[(cons? 1st) (first 1st) ‘e
(1st-max (rest 1st))]))

Another List function: 1st-max

But this is not the same function as before!

;3 lst-max : Listof<Int> Int -> Int
;5 Returns the largest number in the given list
;3 accumulator max-so-far : Int
;5 1lnvariant: is the largest val in 1lst “so far”
(define (lst-max 1lst max-so-far)
(cond
[(empty? 1st) max-so-far]
[else (lst-max (rest 1lst)
(max (first 1lst) max-so-far))]))

Design Recipe For Accumulator Functions

When a function needs “extra information”:

1. Specify accumulator:
* Name
* Signature
* Invariant
« A property of the accumulator that is always true

2. Define internal “helper” fn with extra accumulator arg

(Helper fn does not need extra description, statement, or examples,
if they are the same ...)

3. Call *helper” fn, with initial accumulator value, from original fn

A List Accumulator Example

Function needs “extra information” ...

55 lst-max : List<Int> -> Int
;5 Returns the largest value in the given list

(define (1lst-max initial-1lst)

.. accumulator max-so-far : Int 1. Specify accumulator: name, signature, invariant
) °

;5 dinvariant: is the largest val in initial-1st| “so far”

(define (1lst-max/accum lst max-so-far)
(cond
[(empty? 1lst) max-so-far]
[else (lst-max/accum (rest 1st)
(max (first 1st) max-so-far))])

2. Define internal “helper” fn with accumulator arg

))

A List Accumulator Example

55 lst-max : List<Int> -> Int
;5 Returns the largest value in the given list

(define (1lst-max initial-1lst)

;5 accumulator max-so-far : Int
;5 dinvariant: is the largest val in initial-1lst

“so far”

(define (lst-max/accum lst max-so-far)
(cond
[(empty? 1lst) max-so-far]
[else (1lst-max/accum (rest 1lst)

(max (first 1st) max-so-far))])

(1st-max/accum ????. initial-1st 7272

3.Call “helper” fn, with initial
accumulator (and other args)

))

A List Accumulator Example

55 lst-max : List<Int> -> Int
;5 Returns the largest value in the given list

(define (1lst-max initial-1lst)

;3 accumulator max-so-far : Int
;5 dinvariant: is the largest val in initial-1st| “so far”

(define (lst-max/accum lst max-so-far)
(cond
[(empty? 1lst) max-so-far]
[else (1lst-max/accum (rest 1lst)
(max (first 1st) max-so-far))])

3.Call “helper” fn, with initial
accumulator (and other args)

(1st-max/accum (rest initial-1st) (first initial-1lst)))

A List Accumulator Example

;5 lst-max : NonEmptylList<Int> -> Int
;5 Returns the largest value 1n the given list

(define (1lst-max initial-1lst)

;3 accumulator max-so-far : Int

;5 dinvariant: is the largest val in initial-1st| “so far”

(define (lst-max/accum lst max-so-far)
(cond
[(empty? 1lst) max-so-far]
[else (1lst-max/accum (rest 1lst)
(max (first 1st) max-so-far))])

(1st-max/accum (rest initial-1st) (first initial-1lst)))

A List Accumulator Example

;5 lst-max : NonEmptylList<Int> -> Int
;5 Returns the largest value 1n the given list

(define (1lst-max initial-1lst)

Helper needs signature, etc if different

;3 lst-max/accum : List<Int> Int -> Int
;3 accumulator max-so-far : Int
;5 dinvariant: is the largest val in initial-1st| “so far”

(define (lst-max/accum lst max-so-far)
(cond
[(empty? 1lst) max-so-far]
[else (lst-max/accum (rest 1st)
(max (first 1st) max-so-far))])

(1st-max/accum (rest initial-1st) (first initial-1lst)))

A List Accumulator Example

;5 lst-max : NonEmptylList<Int> -> Int
;5 Returns the largest value in the given list

(define (lst—maxlinitial—lstb

;3 lst-max/accum : List<Int> Int -> Int
;3 accumulator max-so-far :
;5 dinvariant: is the largest val in initial-1lst

Invariant should be specific

Int

“minus” 1st

(define (lst-max/accum|lst

(cond

max-so-far)

[(empty? 1lst) max-so-far]
[else (lst-max/accum (rest 1st)
(max (first 1st) max-so-far))])

(1st-max/accum (rest initial-1lst) (first initial-lst)

))

A List Accumulator Example

Can Implement with ...

;5 lst-max : NonEmptylList<Int> -> Int map? | X

;5 Returns the largest value in the given list

(define (lst-max 1lsto) filter?
;5 lst-max/a : List<Int> Int -> Int fold ?| M

;3 accumulator max-so-far : Int
;5 dinvariant: is the largest val in 1lst@ “minus” rst-1st

(define (lst-max/a rst-1lst max-so-far)
(cond
[(empty? rst-1st) max-so-far]
[else (lst-max/accum (rest 1st)
(max (first 1st) max-so-far))])

(1st-max/a (rest 1st@) (first 1st@)))

"~ Common List Function: foldl

;5 foldl: (XY ->Y) Y Listof<X> -> Y

;5 Computes a single value from given list,

;5 determined by given fn and initial val.

;5 fn 1s applied to each list element, first-element-first

(define (foldl fn result-so-far 1lst)
(cond
[(empty? 1st) result-so-far]
[else (foldl fn (fn (first 1lst) result-so-far) (rest 1lst)))]))

Accumulator!

;3 sum-1st: ListofInt -> Int (((1 + 0) + 2) + 3)
(define (sum-1st 1st) (foldl + © 1st))

(((1 -9) -2)-3)

ot A;'_ray reduce () Il
(fold)

Array of @lements

Accumulator

(in this case, it has an initial
value of O because it’s empty)

This accumulator
will now become
the initial value
for the next
iteration (set of
fruits)

Accumulator
implementing
callback function
(whichis
mixing/addition
of all fruits in the
array together)

Accumulator

when you
start adding

elements .

Result (single value)

 Repo: ¢s450f24/in-class-10-21
e File: in-class-10-21-<Last>-<First>.rkt

In-class Coding 10/21: Accumulators

;3 rev @ List<X> -> List<X>
;5 Returns the given list with elements in reverse order

(define (rev 1sto)

;5 accumulator ??? : ???

. invapiant: 277 1. Specify accumulator: name, signature, invariant
)) [] e o °

|
2. Define internal “helper” fn with accumulator arg

(define (rev/a 1lst acc ???)
P??

)

(rev/a 1ste ???)) 3.Call “helper” fn, with initial accumulator

