
From Stack Traces to Lazy Rewriting Sequences

Stephen Chang1, Eli Barzilay1, John Clements2, and Matthias Felleisen1

1 Northeastern University, Boston, Massachusetts, USA
2 California Polytechnic State University, San Luis Obispo, California, USA

Abstract. Reasoning about misbehaving lazy functional programs can
be confusing, particularly for novice programmers. Unfortunately, the
complicated nature of laziness also renders most debugging tools inef-
fective at clarifying this confusion. In this paper, we introduce a new
lazy debugging tool for novice programmers, an algebraic stepper that
presents computation as a sequence of parallel rewriting steps. Parallel
program rewriting represents sharing accurately and enables debugging
at the level of source syntax, minimizing the presentation of low-level de-
tails or the effects of distorting transformations that are typical for other
lazy debuggers. Semantically, our rewriting system represents a com-
promise between Launchbury’s store-based semantics and an axiomatic
description of lazy computation as sharing-via-parameters. Finally, we
prove the correctness of our tool by showing that the stepper’s run-time
machinery reconstructs the expected lazy rewriting sequence.

Keywords: lazy programming, debugging, lazy lambda calculus

1 How Functional Programming Works

While laziness enables modularization [13], it unfortunately also reduces a pro-
grammer’s ability to predict the ordering of evaluations. As long as programs
work, this cognitive dissonance poses no problems. When a lazy program exhibits
erroneous behavior, however, reasoning about the code becomes confusing, espe-
cially for novices. A programmer may look to a debugger for help, but the nature
of laziness affects these tools as well, often forcing them to present evaluation in
a distorted manner, with some debuggers ignoring or hiding laziness altogether.

In this paper, we present a new debugging tool for students of lazy pro-
gramming, an algebraic stepper for Lazy Racket that explains computation via
a novel rewriting semantics. Our key idea is to use substitution in conjunction
with selective parallel reduction to simulate shared reductions. Shared expres-
sions are identified semantically with labels and are reduced simultaneously in
the program source. This enables a clean syntactic presentation of lazy eval-
uation that eliminates many of the drawbacks of previous syntax-based tools.
Showing computation as a rewriting of the program source means that we do
not need to apply complicated preprocessing transformations nor do we need ex-
traneous low-level details to explain evaluation. In addition, our experience with
the DrRacket stepper [6] for call-by-value Racket, as well as studies of other

2 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

researchers [12, 21], confirm that students find syntax-based tools more intuitive
to use than graphical ones. This makes sense because programmers are already
used to reasoning about their progams in terms of the source code.

Our rewriting semantics is also the appropriate basis for a correctness proof
of the stepper. For the proof, we use a Haskell-like, thunk-based lazy language
model, further enriched with continuation marks [6]—which help reconstruct the
stepper sequence—and then exploit a proof strategy from Clements [5] to show
that the implementation language bisimulates our lazy rewriting semantics.

Section 2 briefly introduces Lazy Racket and our stepper with examples.
Section 3 presents our novel lazy rewriting system. Section 4 summarizes the
implementation of Lazy Racket and presents a model of the lazy stepper, and
Section 5 presents a correctness proof for the stepper.

2 Lazy Racket and its Stepper

Lazy Racket programs are a series of definitions and expressions that refer to
those definitions. Here is a simplistic example:

(define (f x) (+ x x))

(f (+ 1 2))

A programmer invokes the Lazy Racket stepper from the DrRacket IDE. Run-
ning the stepper displays the rewriting sequence for the current program. The
steps are displayed aynchronously so the programmer can begin debugging be-
fore evaluation completes. Figure 1 shows a series of screenshots for the rewriting
sequence of the above program. A green box highlights redexes on the left-hand
side of a step and a purple box highlights contractums on the right-hand side.3

The programmer can navigate the rewriting sequence in either the forward or
backward direction.

Fig. 1. Lazy Stepper, Example 1

In step 2, since arguments in an application are delayed, an unevaluated argu-
ment replaces each instance of the variable x in the function body. In step 3, since

3 The tool utilizes colors though the printed figures may be in black and white.

From Stack Traces to Lazy Rewriting Sequences 3

arithmetic primitives are eager, the program requires the value of the argument
for the first addition operand so it is forced. Simultaneously, all other shared
instances of the argument are reduced as well. That is, the stepper explains eval-
uation as an algebraic process using a form of parallel program rewriting. Since
the second operand refers to the same argument as the first one, by the time eval-
uation of the program requires a value for the second operand, a result is already
available because the computed value of the first operand was saved. In short,
no argument evaluation is repeated, satisfying the criteria for lazy evaluation.

A second example involves infinite lists:

(define (add-one x) (+ x 1))

(define nats (cons 1 (map add-one nats)))

(+ (second nats) (third nats))

The rewriting sequence for this program appears in Figure 2. Only the essential
steps are shown. In step 4, since cons is lazy, its arguments are not evaluated until
needed. However, while the contents of all thunks in the previous example were
visible to the programmer, here an opaque <Thunk#0> represents the rest of nats
because nats is currently being evaluated. The evaluation of second forces the
map expression to produce a cons of two additional opaque thunks, <Thunk#1>
and <Thunk#2>, because map is a libary function whose source is unknown. In
step 5, second extracts <Thunk#1> from the list. In step 6, evaluation requires
the value of <Thunk#1>, so it is forced. The ellipses on the left indicate forcing of
an opaque thunk. In steps 6 and 7, the stepper simultaneously updates the nats

definition with the result. It highlights only shared terms that are part of the
current redex. This cleans up the presentation of the rewriting steps and makes
lazy evaluation easier to follow in our tool. The remaining steps show the similar
evaluation of the other addition operand and are thus omitted.

Fig. 2. Lazy Stepper, Example 2

4 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

3 Lazy Racket Semantics

Our key theoretical innovation is the lazy rewriting system, λlr, which specifies
the exact nature of steps for our tool. The syntax of λlr is identical to the core of
most functional programming languages and includes integers, strings, booleans,
variables, abstractions, applications, primitives, lists, and a conditional:4

e = n | s | b | x | λx.e | (e e) | (cons e e) | null | (p1 e) | (p2 e e) | (if e e e)

n ∈ Z, s ∈ Strings, b = true | false, p1 = first | rest, p2 = + | − | ∗ | /

To specify the semantics of λlr, we first extend e by adding a new expression:

elr = e | elr` ` ∈ Labels

The “labeled” expression, elr`, consists of a tag ` and a subexpression elr. La-
beled expressions are not part of the language syntax but are necessary for eval-
uation. Rewriting a labeled expression triggers the simultaneous rewriting of all
other expressions with the same label. In our language, we require all expressions
with the same label ` to be identical. We call this consistent labeling:

Definition 1. A program is consistently labeled if, for all `1, `2, e
lr
1 , elr2 , if elr1

`1

and elr2
`2 are two subexpressions in a program, and `1 = `2, then e

lr
1 = elr2 .

3.1 Rewriting Rules

To further formulate a semantics, we define the notion of values:

v = n | s | b | λx.elr | null | (cons elr` elr`) | v`

Numbers, strings, booleans, λs, null, and cons expressions where each element
is labeled, are values. In addition, any value tagged with labels is also a value.

In the rewriting of λlr programs, evaluation contexts determine which part
of the program to rewrite next. Evaluation contexts are expressions where a hole
[] replaces one subexpression:

E = [] | (E elr) | (p2 E elr) | (p2 v E) | (p1 E) | (if E elr elr) | E`

The (E elr) context indicates that the operator in an application must be eval-
uated so that application may proceed. The p1 and p2 contexts indicate that
primitives pi are strict in all argument positions and are evaluated left to right.
The if context dictates strict evaluation of only the test expression. Finally, the
E` context dictates that a redex search goes under labeled expressions.

Evaluation of a λlr program proceeds according to the program rewriting
system in Figure 3. It has two phases. A rewriting step begins when the progam
is partitioned into a redex and an evaluation context and the redex is contracted
according to the phase 1 rules. If the redex does not occur under a label, it is the
only contracted part of the program. If the redex does occur under a label, then in
phase 2, all other instances of that labeled expression are contracted in the same

4 Cyclic structures are omitted for space but should be straightforward to add, see [9].

From Stack Traces to Lazy Rewriting Sequences 5

Phase 1: E[elr]
phase17−−−−→lr E[elr′]

where: elr elr′

((λx.elr1)
~̀
elr2) elr1 {x := elr2

`1}, fresh `1 βLR

(p2 n1
~̀
n2

~̀
) (δ (p2 n1 n2)) Prim

(cons elr1 elr2), elr1 or elr2 unlabeled (cons elr1
`1 elr2

`2), fresh `1, `2 Cons

((first | rest) (cons elr1 elr2)
~̀
) elr1 | elr2 First | Rest

(if (true | false)
~̀
elr1 elr2) elr1 | elr2 If-t | If-f

Phase 2: If redex occurs under (nearest) label `, where E[] = E1[(E2[])`], then:

E[elr′]
phase27−−−−→lr E[elr′]{{`⇐ E2[elr′]}}

Fig. 3. The λlr Rewriting System.

way. In phase 2, the evaluation context is further subdivided as E[] = E1[(E2[])
`
]

where ` is the label nearest the redex, E1 is the context around the `-labeled
expression, and E2 is the context under label `. Thus E2 contains no additional
labels on the path from the root to the hole. An “update” function performs
the parallel reduction, where the notation elr1 {{`⇐ elr2 }} means “in elr1 , replace
expressions under label ` with elr2 .” The function is formally defined as follows:

elr1
`{{`⇐ elr2 }} = elr2

`

elr1
`1{{`2 ⇐ elr2 }} = (elr1 {{`2 ⇐ elr2 }})

`1 , `1 6= `2

(λx.elr1){{`⇐ elr2 }} = λx.(elr1 {{`⇐ elr2 }})
(elr1 elr2){{`⇐ elr3 }} = (elr1 {{`⇐ elr3 }} elr2 {{`⇐ elr3 }})

(elr1 elr2 . . .){{`⇐ elr3 }} = (elr1 {{`⇐ elr3 }} elr2 {{`⇐ elr3 }} . . .)

In Figure 3, the βLR rule specifies that function application occurs before the
evaluation of arguments. To remember where expressions originate, the argument

receives an unused label `1 before substitution is performed. The notation elr
~̀

represents an expression wrapped in one or more labels. During a rewriting step,
labels are discarded from values because no further reduction is possible. Binary
p2 primitive applications are strict in their arguments, as seen in the Prim rule.
The δ function interprets these primitives and is defined in the standard way
(division by 0 results in a stuck state). The Cons rule shows that, if either
argument is unlabeled, both arguments are wrapped with new labels. Adding
an extra label around an already labeled expression does not affect evaluation
because parallel updating only uses the innermost label. The First and Rest
rules extract the appropriate component from a cons cell, and the If-t and If-f
rules choose the first or second branch of the if expression.

A program rewriting step 7−→lr is the composition of
phase17−−−−→lr and

phase27−−−−→lr.
Program rewriting preserves the consistent labeling property.

Lemma 1. If elr1 7−→lr e
lr
2 and elr1 is consistently labeled, then elr2 is as well.

The rewriting rules are deterministic because any expression elr can be uniquely
partitioned into an evaluation context and a redex. If elr1 rewrites to a expression

6 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

elr2 , then elr1 rewrites to elr2 in a canonical manner. Thus an evaluator is defined:

evallr(e)

v, if e 7−→→lr v

⊥, if, for all e 7−→→lr e
lr
1 , e

lr
1 7−→lr e

lr
2

error, if e 7−→→lr e
lr
1 , e

lr
1 /∈ v, 6 ∃elr2 such that elr1 7−→lr e

lr
2

where 7−→→lr is the reflexive-transitive closure of 7−→lr.

4 Lazy Stepper Implementation

Figure 4 summarizes the software architecture of our stepper. The first row de-
picts a λlr Lazy Racket rewriting sequence. To construct this rewriting sequence,
the stepper first macro-expands a Lazy Racket program to a plain Racket pro-
gram with delay and force. Then, annotations are added to the expanded
program such that executing it emits a series of output values representing stack
traces. The stepper reconstructs the reduction sequence for the unannotated
Racket program from these stack traces. Finally, this plain Racket reduction
sequence is synthesized to the desired Lazy Racket rewriting sequence.

e1
� //

EXPAND

��

e2
� // e3

� // · · · � // en−1
� // v [Lazy Racket]

e1
� //

ANNOTATE

��

e2
� //

KS

e3
� //

KS

· · · � //

SYNTHESIZE

KS

en−1
� //

KS

v

KS

[Racket]

e1
� //

vout1

KS

e2
� //

vout2

KS

· · · � //

RECONSTRUCT

KS

voutn−2

KS

v

=

[Anno. Racket]

Fig. 4. Stepper Implementation Architecture

The correctness of the lazy stepper thus depends on two claims:

1. The reduction sequence of a plain Racket program can be reconstructed from
the output produced by an annotated version of that program.

2. The rewriting sequence of a Lazy Racket program is equivalent to the reduc-
tion sequence of the corresponding Racket program, modulo macros.

The first point corresponds to the work of Clements [6] and is depicted by the
bottom half of Figure 4. Indeed, the lazy stepper implementation mostly reuses
the existing Racket stepper so we only explain the differences. The second point
is depicted by the top half of Figure 4. The rest of the section formally presents
the architecture in enough detail so that (1) our stepper can be implemented for
any lazy programming language, and (2) so that we can prove its correctness.

From Stack Traces to Lazy Rewriting Sequences 7

4.1 Racket + delay/force

When the stepper is invoked on a Lazy Racket program, the source is first macro-
expanded to a Racket program with delay and force strategically inserted. We
model this latter language with λdf:

erkt = n | s | b | x | λx.erkt | (erkt erkt) | (if erkt erkt erkt) | (cons erkt erkt) | null

| (p1 erkt) | (p2 erkt erkt) | (delay erkt) | (force erkt)

n ∈ Z, s ∈ Strings, b = true | false, p1 = first | rest, p2 = + | − | ∗ | /

The syntax of λdf is similar to λlr except that delay and force replace labeled
expressions. A delay expression suspends evaluation of its argument in a thunk;
applying force to a (nest of) thunk(s) evaluates it and memoizes the result.

The semantics of λdf combines the usual call-by-value world with store effects.
We describe it with a CS machine [8]. The C stands for control string, and the S
is a store. In our machine the control string may contain locations, i.e., references
to delayed expressions in the store. In contrast to the standard CS machine, our
store holds only delayed computations:

edf = erkt | ` (Machine Expressions) cdf = Edf[edf] (Control Strings)
Sdf = Pdf

1 , . . . ,Pdf
n (Transition Sequences) Pdf = 〈cdf, σ〉 (Machine States)

` ∈ Locations σ = ((`, edf), . . .) (Stores)

(Evaluation Contexts)

Edf = [] | (Edf edf) | (vdf Edf) | (if Edf edf edf) | (p2 Edf edf) | (p2 vdf Edf)

| (cons Edf edf) | (cons vdf Edf) | (p1 Edf) | (force Edf) | (force ` Edf)

vdf = n | s | b | λx.edf | (cons vdf vdf) | null | ` (Values)

The store is represented as a list of pairs; ellipses means “zero or more of the
preceding element”. The evaluation contexts are the standard by-value contexts,
plus two force contexts. The first resembles the force expression in a program
and indicates the forcing of some arbitrary expression. The second force context
is used when evaluating a delayed computation stored in location `. Evaluation
under a (force ` []) context corresponds to evaluation under a label in λlr.
This special second force context is non-syntactic, hence the need for defining
separate machine expressions (edf) and control strings (cdf) above.

The starting machine configuration for a Racket program erkt is 〈erkt, ()〉
where the program is set as the control string and the store is initially empty.
Evaluation stops when the control string is a value. Values are numbers, strings,
booleans, abstractions, lists, or store locations. The CS machine transitions are
specified in Figure 5. Every program erkt has a deterministic transition sequence
because the left hand sides of all the transition rules are mutually exclusive and
cover all possible control strings in the C register.

The by-value βv transition is standard, as are the omitted transitions for if
and the pi primitive functions. The Delay transition reduces a delay expression
to an unused location ` and the suspended expression is saved at that location in
the store. When the argument to a force expression is a location, the suspended
expression at that location is retrieved from the store and plugged into a special

8 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

7−→cs

〈Edf[((λx.edf) vdf)], σ〉 7−→cs 〈Edf[edf{x := vdf}], σ〉 βv
. . .

〈Edf[(delay edf)], σ〉 7−→cs 〈Edf[`], σ[[`← edf]]〉 , ` /∈ dom(σ) Delay
〈Edf[(force `)], σ〉 7−→cs 〈Edf[(force (force ` σ[[`]]))], σ〉 Force-delay
〈Edf[(force ` vdf)], σ〉 7−→cs 〈Edf[vdf], σ[[`← vdf]]〉 Force-update

〈Edf[(force vdf)], σ〉 , vdf /∈ loc 7−→cs 〈Edf[vdf], σ〉 Force-val

Fig. 5. CS Machine Transitions

force evaluation context. This special context saves the store location of the
forced expression so the store can be updated with the resulting value. The
outer force context is retained in case there are nested delays.

4.2 Continuation Marks

A stepper for a functional language needs access to the control stack of its
evaluator to reconstruct the evaluation steps. One implementation technique
is to grant complete, privileged access to the control stack. As Clements [6]
argued, however, such privileged access is unnecessary and often undesirable, in
part because the stepper would be tied to a specific language implementation.

Continuation marks enable the implementation of stack-accessing tools with-
out granting privileged stack access. The stepper for Lazy Racket utilizes con-
tinuation marks to get a progam’s stack trace and thus our implementation can
be easily ported to any language that provides the two simple operations:

1. store a value in the current frame of the control stack,
2. retrieve all stored continuation marks.

The eager Racket stepper first annotates a source program with store and re-
trieve operations at appropriate points. Then, at each retrieve point, the stepper
reconstructs a reduction step from the information in the continuation marks.
The lazy stepper extends this model with delay and force constructs. The
annotation and reconstruction functions are defined in Section 5.

4.3 Racket + delay/force + Continuation Marks

The language λcm extends λdf in a stratified manner and models the language
for programs annotated with continuation marks:

ecm = erkt | (ccm) | (wcm ecm ecm) | (output ecm) | (loc? ecm)

λcm adds four additional kinds of expressions to λdf. When a wcm, or “with
continuation mark”, expression is evaluated, its first argument is evaluated and
stored in the current stack frame before its second argument is evaluated. A ccm

expression evaluates to a list of all continuation marks currently stored in the
stack. When reducing an output expression, its argument is evaluated and sent
to an output channel; its result is inconsequential. The loc? predicate identifies
locations and is needed by annotated programs.

From Stack Traces to Lazy Rewriting Sequences 9

4.4 CSKM Machine

One way to model continuation marks requires an explicit control stack. Hence,
we first convert our CS machine to a CSK machine, where the evaluation context
is separated from the control string, relocated to a new K register, and converted
to a stack of frames. The conversion to a CSK machine is straightfoward [8]. In
addition, we pair each context with a continuation mark m, which is stored in a
fourth “M” register, giving us a CSKM machine. Here are all the continuations:

Kcm = mt | (app1 ccm Kcm m) | (app2 vcm Kcm m) | (if ccm1 ccm2 Kcm m)

| (prim2-1 p2 ccm Kcm m) | (prim2-2 p2 vcm Kcm m) | (prim1 p1 Kcm m)

| (cons1 ccm Kcm m) | (cons2 vcm Kcm m) | (loc? Kcm m)

| (force Kcm m) | (force ` Kcm m) | (wcm ccm Kcm m) | (output Kcm m)

The configurations of the CSKM machine are:

Pcm = 〈ccm, σ,Kcm,m〉 (Machine States) Scm = Pcm
1 , . . . ,Pcm

n (Transition Seq.)
ccm = ecm | ` (Control Strings) vcm = vdf (Values)
σ = ((`, ccm), . . .) (Stores) m = ∅ | vcm (Cont. Marks)

Control strings are again extended to include location expressions, values are
the same as CS machine values, and stores map locations to control string ex-
pressions. The marks m are either empty or values.

The transitions for our CSKM machine are in Figure 6. For space reasons,
we only include the transitions for the new constructs: wcm, ccm, output, and
loc?. The other transitions are easily derived from the transitions for the CS ma-
chine [8]. To formally model output, we tag each transition, making our machine
a labeled transition system [14]. When the machine emits output, the transition
is tagged with the outputted value; otherwise, the tag is ∅.

7−→cskm

〈(wcm ccm1 ccm2), σ,Kcm,m〉 ∅7−→cskm 〈ccm1 , σ, (wcm ccm2 Kcm m), ∅〉 wcm:exp

〈vcm, σ, (wcm ccm Kcm m),m′〉 ∅7−→cskm 〈ccm, σ,Kcm, vcm〉 wcm:val

〈(ccm), σ,Kcm,m〉 ∅7−→cskm 〈vcm, σ,Kcm, ∅〉 , vcm=π(Kcm,m) ccm

〈(output ccm), σ,Kcm,m〉 ∅7−→cskm 〈ccm, σ, (output Kcm m), ∅〉 out:exp

〈vcm, σ, (output Kcm m),m′〉 vcm

7−→cskm 〈42, σ,Kcm,m〉 out:val

〈(loc? ccm), σ,Kcm,m〉 ∅7−→cskm 〈ccm, σ, (loc? Kcm m), ∅〉 loc:exp

〈`, σ, (loc? Kcm m),m′〉 ∅7−→cskm 〈true, σ,Kcm,m〉 loc-t:val

〈vcm, σ, (loc? Kcm m),m′〉 , vcm/∈` ∅7−→cskm 〈false, σ,Kcm,m〉 loc-f:val

Fig. 6. CSKM Machine Transitions

The starting state for a program ecm is 〈ecm, (), mt, ∅〉; evaluation halts when
the control string is a value and the control stack is mt. The transition sequence
for a program is again deterministic.

10 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

The wcm:exp transition sets the first argument as the control string and
saves the second argument in a wcm continuation. In the resulting machine con-
figuration, the M register is set to ∅ because a new frame is pushed onto the stack.
When evaluation of the first wcm argument is complete, the resulting value is set
as the new continuation mark, as dictated by the wcm:val transition, overwrit-
ing any previous mark. The ccm transition uses the π function to retrieve all
continuation marks in the stack. The π function is defined as follows:

(π mt m) = (cons m null)

(π (app1 ccm Kcm m) m′) = (cons m′ (π Kcm m))

(π (app2 vcm Kcm m) m′) = (cons m′ (π Kcm m))
. . .

(π (loc? Kcm m) m′) = (cons m′ (π Kcm m))

Only the first few cases are shown. The rest of the definition is similarly defined.
The out:exp transition sets the argument in an output expression as the control
string and pushes a new output continuation frame onto the control stack. Again,
the continuation mark register is initialized to ∅ due to the new stack frame.
When the output expression is evaluated, the resulting value is emitted as output,
as modeled by the tag on the out:val transition.

5 Correctness

Our algebraic stepper comes with a concise specification: the λlr rewriting sys-
tem. Thus, it is relatively straightforward to state a correctness theorem for the
stepper. Let ζ be a label-stripping function.

Theorem 1 (Stepper Correctness). If for some Lazy Racket program e, the
stepper shows the sequence e, ζ[[elr1]], . . . , ζ[[elrn]], then e 7→→lr e

lr
1 7→→lr · · · 7→→lr e

lr
n .

The theorem statement involves multistep rewriting because some steps, such as
Cons, merely add labels and change nothing else about the term. The proof of
the theorem consists of two lemmas. First, we show that a CS machine reduction
sequence can be reconstructed from the output of an annotated version of that
program running on a CSKM machine. Second, we prove that this reduction
sequence is equivalent to the rewriting sequence of the original Lazy Racket
program, modulo label assignment. The following subsections spell out the two
lemmas and present proof sketches.

5.1 Annotation and Reconstruction Correctness

To state the first correctness lemma, we need three functions. First, T consumes
CSKM steps and produces a trace of output values:

T [[· · · 7−→cskm Pcm
i

vcm

7−→cskm Pcm
i+1 7−→cskm · · ·]] = . . . , vcm, . . . T : Scm → vcm1 , . . . , vcmn

Second, A : erkt → ecm annotates a Racket program and R : vcm1 , . . . , vcmn → Sdf
reconstructs a CS machine transition sequence from a list of output values.

From Stack Traces to Lazy Rewriting Sequences 11

Lemma 2 (Annotation/Reconstruction Correctness).
For any Racket program erkt, if 〈erkt, ()〉 7−→cs · · · 7−→cs Pdf, then:

R[[T [[
〈
A[[erkt]], (), mt, ∅

〉
7−→cskm · · · 7−→cskm Pcm]]]] =

〈
erkt, ()

〉
7−→cs · · · 7−→cs Pdf

Our annotation and reconstruction functions extend that of Clements [6].
Annotation adds output and continuation mark wcm and ccm operations to a
program. For example, annotating the program (+ 1 2) results in the following:5

(let* ([t0 (output (cons Q[[(+ 1 2)]] (ccm)))]
[v1 (+ 1 2)]
[t1 (output (cons Q[[v1]] (ccm)))])

v1)

Annotated programs utilize the quoting function,Q, for converting an expression
to a value representation. For example Q[[(+ 1 2)]] = (list "+" 1 2). There is
also an inverse function, Q−1, for reconstruction. The above annotated program
evaluates to 3, outputting the values Q[[(+ 1 2)]] and Q[[3]] in the process, from
which the reduction sequence (+ 1 2) → 3 can be recovered. The (ccm) calls in
the example return the empty list since there were no calls to wcm. There is no
need for wcm annotations because the entire program is a redex.

Extending the example to (+ (+ 1 2) 5) yields:

(let* ([v0 (wcm (list "prim2-1" "+" 5)
(let* ([t0 (output (cons Q[[(+ 1 2)]] (ccm)))]

[v1 (+ 1 2)]
[t1 (output (cons Q[[v1]] (ccm)))])

v1))]
[v2 (+ v0 5)]
[t2 (output (cons Q[[v2]] (ccm)))])

v2)

This extended example contains the first example as a subexpression and there-
fore, the annotated version of the program contains the annotated version of the
first example. The (+ 1 2) expression now occurs in the context (+ [] 5) and the
wcm expression stores an appropriate continuation mark. The "prim2-1" label
indicates that the hole is in the left argument position. The first output expres-
sion now produces the output value (list Q[[(+ 1 2)]] (list "prim2-1" "+" 5)),
which can be reconstructed to the expression (+ (+ 1 2) 5). Reconstructing all
outputs produces (+ (+ 1 2) 5)→ (+ 3 5)→ 8.

The context information stored in continuation marks is used to reconstruct
machine states and the reconstruction and annotation functions defined in Fig-
ures 7 and 8 demonstrate how this works for force and delay expressions. If a
forced expression erkt does not evaluate to a location, the annotations are like
those for the above examples. If erkt evaluates to a location, additional contin-
uation marks (Figure 7, boxes 1 and 2) are needed to indicate the presence of
force contexts during the evaluation of the delayed computation. An additional
output expression (box 3) is also needed so that steps showing the removal of
both the (force []) and (force ` []) contexts can be reconstructed. With

5 For clarity, we use some syntactic sugar here (let* and list).

12 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

(rest (ccm)) (box 5), we ensure that the (force ` []) context is not part of the
reconstructed expression. The location v0 (box 4) is included in the output so
the store can be properly reconstructed. The "val" tag directs the reconstruc-
tion function to use the value Q[[v2]] from the emitted location-value pair during
reconstruction.

A : erkt → ecmA[[(force erkt)]] =
(let* ([v0 (wcm (list "force") A[[erkt]])]

[v1 (if (not (loc? v0))
v0
(wcm (list "force")

1

(wcm (list "force" v0)
2

(let* ([v2 (force v0)] ; v0 is location

[t0 (output
3
(cons (list "val" v0

4
Q[[v2]])

(rest (ccm))
5
))])

v2))))]
[t1 (output (cons Q[[v1]] (ccm)))])

v1)

A[[(delay erkt)]] =

(let* ([t0 (output (cons Q[[(delay erkt)]] (ccm)))]
[` (alloc)]

[t1 (output (cons (list "loc" ` Q[[erkt]]
6
) (ccm)))])

(delay A[[erkt]]))

Fig. 7. Annotation function for delay and force.

The annotation of a delay expression requires predicting the location of the
delayed computation in the store. We therefore assume we have access to an
alloc function that uses the same location-allocating algorithm as the memory
management system of the machine.6 In addition to the location, the delayed
expression itself (box 6) is also included in the output, to enable reconstruction
of the store. The "loc" tag directs the reconstruction function to use the location
from the emitted location-value pair when reconstructing the control string.

The reconstruction function in Figure 8 consumes a list of values, where each
value is a sublist and reconstructs a CS machine state from each sublist. The
first element of every vcmi sublist represents a (quoted) expression that is plugged
into the context represented by the rest of the sublist. The store is reconstructed
by retrieving all the location-value pairs in all the sublists up to the current one.
The arguments to the store-reconstruction function RS may contain duplicate
entries for a location, so a location-value pair is only included in the resulting
store if it does not occur in any subsequent arguments.

6 Since labels are displayed as sharing, this unrealistic assumption is acceptable.

From Stack Traces to Lazy Rewriting Sequences 13

R[[. . . , vcmi , . . .]] = . . . , 〈RE [[(rest vcmi)]][RC [[(first vcmi)]]], R : vcm1 , . . . , vcmn → Sdf

RS [[vcm1 , . . . , vcmi]]〉, . . .

RE [[(cons (list "force") vcm)]] = (force RE [[vcm]]) RE : vcm → Edf

RE [[(cons (list "force" `) vcm)]] = (force ` RE [[vcm]])

RC [[(list "val" ` vdf)]] = Q−1[[vdf]] RC : vcm → edf

RC [[(list "loc" ` vdf)]] = `

otherwise, RC [[vdf]] = Q−1[[vdf]]

RS : vcm1 , . . . , vcmn → σRS [[(cons (list s ` vdf′)), vdfrest, . . .]]

=

{
(cons (`,Q−1[[vdf′]]) RS [[vdfrest, . . .]]), if ` /∈ dom(RS [[vdfrest, . . .]])
RS [[vdfrest, . . .]] if ` ∈ dom(RS [[vdfrest, . . .]])

RS [[vdf, vdfrest, . . .]] = RS [[vdfrest, . . .]], if (first vdf) 6= (list s ` vdf
′
)

Fig. 8. Reconstruction function for delay and force.

The proof of lemma 2 extends Clements’s proof [5, Section 3.4] with cases for
delay and force. The original cases must cope with the additional store, but
this is straightforward.

5.2 Lazy Racket Correctness

The ϕ function in Figure 9 macro-expands a Lazy Racket program. Because
source terms don’t include labels, ϕ is undefined for labeled terms. Its partial
inverse, ϕ−1, defined in Figure 10, synthesizes an unlabeled Lazy Racket program
from a (CS machine representation of a) Racket program.

Lemma 3 states Lazy Racket’s correctness in terms of ϕ, ϕ−1, the label-
stripping function ζ, and the λlr rewriting system. That is, every CS machine
sequence has an equivalent λlr rewriting sequence, modulo ϕ−1 and ζ.

ϕ[[λx.e]] = λx.ϕ[[e]] ϕ : e→ erkt

ϕ[[(e1 e2)]] = ((force ϕ[[e1]]) (delay ϕ[[e2]]))

ϕ[[(cons e1 e2)]] = (cons (delay ϕ[[e1]]) (delay ϕ[[e2]]))

ϕ[[(if e1 e2 e3)]] = (if (force ϕ[[e1]]) ϕ[[e2]] ϕ[[e3]])

ϕ[[(pn e . . .)]] = (pn (force ϕ[[e]]) . . .)

otherwise, ϕ[[e]] = e

Fig. 9. Macro-expanding Lazy Racket to plain Racket.

14 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

ϕ−1[[cdf]]σ = e, where 〈e, 〉 = ϕ̄[[cdf]]σ ϕ−1 : cdf × σ → e

ϕ̄ : cdf × σ → 〈e, σ〉
ϕ̄[[λx.edf]]σ = 〈λx.e, σ〉 , where 〈e, σ〉 = ϕ̄[[edf]]σ

ϕ̄[[(cdf1 cdf2)]]σ =
〈
(e1 e2), σ′′

〉
, where

〈
e1, σ

′〉 = ϕ̄[[cdf1]]σ,
〈
e2, σ

′′〉 = ϕ̄[[cdf2]]σ′

ϕ̄[[(p2 cdf1 cdf2)]]σ =
〈
(p2 e1 e2), σ′′

〉
, where

〈
e1, σ

′〉 = ϕ̄[[cdf1]]σ,
〈
e2, σ

′′〉 = ϕ̄[[cdf2]]σ′

ϕ̄[[(cons cdf1 cdf2)]]σ =
〈
(cons e1 e2), σ′′

〉
,where

〈
e1, σ

′〉 = ϕ̄[[cdf1]]σ,
〈
e2, σ

′′〉 = ϕ̄[[cdf2]]σ′

ϕ̄[[(p1 cdf)]]σ =
〈
(p1 e), σ′

〉
, where

〈
e, σ′

〉
= ϕ̄[[cdf]]σ

ϕ̄[[(if cdf1 edf2 edf3)]]σ =
〈
(if e1 e2 e3), σ′′

〉
,where

〈
e1, σ

′〉 = ϕ̄[[cdf1]]σ,
〈
e2, σ

′〉 = ϕ̄[[edf2]]σ′〈
e3, σ

′〉 = ϕ̄[[edf3]]σ′

ϕ̄[[(delay edf)]]σ = ϕ̄[[edf]]σ

ϕ̄[[`]]σ = ϕ̄[[σ[[`]]]]σ

ϕ̄[[(force cdf)]]σ = ϕ̄[[cdf]]σ

ϕ̄[[(force ` cdf)]]σ =
〈
e, σ′[[`← e]]

〉
, where

〈
e, σ′

〉
= ϕ̄[[cdf]]σ

otherwise, ϕ̄[[edf]]σ =
〈
edf, σ

〉
Fig. 10. Synthesizing Lazy Racket from plain Racket.

Lemma 3 (LR Correctness). For all Lazy Racket programs e and Racket pro-
grams cdfsuch that 〈ϕ[[e]], ()〉 7−→→cs 〈cdf, σ〉, there exists a Lazy Racket program
elr such that e 7−→→lr e

lr and ϕ−1[[cdf]]σ = ζ[[elr]].

Proof (Sketch). We prove the lemma by induction on the number of CS machine
steps. For the base case, the lemma holds because ϕ−1[[ϕ[[e]]]]() = e. Otherwise,
we proceed by case analysis on the last transition step. For each case, we prove
correct synthesis of evaluation contexts and redexes separately. ut

6 Related Work

Researchers have developed many debugging tools for lazy languages. However,
few of these tools show laziness during evaluation or do so in a intuitive man-
ner. Some tools present declarative traces [19, 18, 24, 26] that show a reduction
sequence for each expression in the program but removes all notions of temporal
ordering of the reductions, a key element to understanding lazy evaluation.

Declarative tools are popular because researchers struggle to portray laziness
operationally. The most basic operational tool records a trace of function calls
during evaluation [15]. Unlike declarative debuggers, these tools explain the lazy
evaluation of expressions relative to other expressions; however, the complexity of
laziness often makes such tools confusing. In reaction, some researchers developed
stack tracing tools that approximate a call-by-value language [1, 20].

From Stack Traces to Lazy Rewriting Sequences 15

Operational-style tools similar to ours show the step-by-step evaluation of
lazy programs. Unfortunately, many of these hide the laziness during evalua-
tion as well [3, 7, 12]. Snyder [23] developed a tool that resembles ours in that
it reconstructs reduction sequences from an annotated program. It uses graph
combinators, however, and the tool is only able to reconstruct an approxima-
tion of the source code. Lapalme and Latendresse [16] developed a tool that,
like ours, inserts “breakpoints” to generate a sequence of reductions but they do
not mention how the steps are determined, nor do they show actual examples.
The GHCi debugger [17] shows laziness while stepping through a program, but
presents it in terms of the low-level implementation. This produces steps that
both users and the authors of the tool consider confusing. Foubister [10] and
Taylor [25] developed graph reduction stepper tools, but programmers prefer
textual tools [12, 21], especially for teaching novices.

Gibbons and Wansbrough [11] created a lazy stepper based on the call-by-
need calculus of Ariola and Felleisen [2]. While the calculus is useful for rea-
soning about equivalences of lazy expressions, it can be confusing to use for
reasoning about lazy executions for three reasons. First, the calculus includes
administrative transformation steps that do not represent real computation the
way substitution does. Second, to express sharing, the calculus never resolves
function calls and instead retains all arguments long after they become super-
fluous. Third, the calculus dereferences variables one at a time, which can be
confusing since all instances of a particular variable are supposed to represent
just one expression. Watson’s tool [27] manages to eliminate the administrative
steps and the persistent arguments at the expense of explicit sharing. Shared
terms are held in a implicit store so programmers are forced to remember those
terms. An argument seemingly reappears as each variable is dereferenced, which
can potentially be confusing. Penney [22] improves Watson’s visualization using
“where” clauses to explicitly show shared terms but tracking such clauses as the
number of placeholders accumulate seems like it would be difficult. No tool uses
full substitution and parallel rewriting steps to represent laziness.

Finally, few tools come with formal models and correctness proofs for their
architecture. Chitil and Luo [4] developed a model for the declarative Hat debug-
ger’s trace generator and show that the evaluation steps can be reconstructed
from the information in the traces. Watson also provides formal definitions for
his transformations [27], and uses a standard store-based operational semantics
for the rewriting steps.

References

1. Allwood, T.O., Peyton Jones, S., Eisenbach, S.: Finding the needle: stack traces
for GHC. In: Proc. 2nd Symp. on Haskell. pp. 129–140 (2009)

2. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
λ calculus. In: Proc. 22nd POPL. pp. 233–246 (1995)

3. Augustson, M., Reinfelds, J.: A visual miranda machine. In: Proc. Software Edu-
cation Conference SRIG-ET. pp. 233–246 (1995)

16 Stephen Chang, Eli Barzilay, John Clements, and Matthias Felleisen

4. Chitil, O., Luo, Y.: Structure and properties of traces for functional programs. In:
Proc. 3rd Intl. Works. Term Graph Rewriting. pp. 39–63 (2006)

5. Clements, J.: Portable and High-level Access to the Stack with Continuation
Marks. Ph.D. thesis, Northeastern University (2006)

6. Clements, J., Flatt, M., Felleisen, M.: Modeling an algebraic stepper. In: Proc.
10th ESOP. pp. 320–334 (2001)

7. Ennals, R., Peyton Jones, S.: HsDebug: debugging lazy programs by not being
lazy. In: Proc. Works. on Haskell. pp. 84–87 (2003)

8. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press (2009)

9. Felleisen, M., Friedman, D.P.: A syntactic theory of sequential state. Theor. Com-
put. Sci. 69(3), 243–287 (1989)

10. Foubister, S.P.: Graphical Application and Visualisation of Lazy Functional Com-
putation. Ph.D. thesis, University of York (1995)

11. Gibbons, J., Wansbrough, K.: Tracing lazy functional languages. In: Proc. CATS.
pp. 11–20 (1996)

12. Goldson, D.: A symbolic calculator for non-strict functional languages. Comput.
J. 37(3), 177–187 (1994)

13. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)
14. Keller, R.: Formal verification of parallel programs. Commun. ACM 19(7) (1976)
15. Kishon, A.: Theory and Art of Semantics-Directed Program Execution Monitoring.

Ph.D. thesis, Yale University (1992)
16. Lapalme, G., Latendresse, M.: A debugging environment for lazy functional lan-

guages. LISP and Symbolic Computation 5(3), 271–287 (1992)
17. Marlow, S., Iborra, J., Pope, B., Gill, A.: A lightweight interactive debugger for

Haskell. In: Proc. Works. on Haskell. pp. 13–24 (2007)
18. Naish, L.: Declarative debugging of lazy functional programs. In: Proc. 16th ACSC

(1993)
19. Nilsson, H., Fritzson, P.: Algorithmic debugging for lazy functional languages. In:

Proc. 4th PLIPL. pp. 385–399 (1992)
20. O’Donnell, J.T., Hall, C.V.: Debugging in applicative languages. LISP and Sym-

bolic Computation 1(2), 113–145 (1988)
21. Patel, M.J., du Boulay, B., Taylor, C.: Effect of format on information and problem

solving. In: Proc. 13th Conf. of the Cognitive Science Society. pp. 852–856 (1991)
22. Penney, A.: Augmenting Trace-based Functional Debugging. Ph.D. thesis, Univer-

sity of Bristol, Australia (1999)
23. Snyder, R.M.: Lazy debugging of lazy functional programs. New Generation Com-

puting 8, 139–161 (1990)
24. Sparud, J., Runciman, C.: Tracing lazy functional computations using redex trails.

In: Proc. 9th PLILP. pp. 291–308 (1997)
25. Taylor, J.P.: Presenting the Lazy Evaluation of Functions. Ph.D. thesis, Queen

Mary and Westfield College (1996)
26. Wallace, M., Chitil, O., Brehm, T., Runciman, C.: Multiple-view tracing for

Haskell: a new hat. In: Proc. Works. on Haskell. pp. 151–170 (2001)
27. Watson, R.D.: Tracing Lazy Evaluation by Program Transformation. Ph.D. thesis,

Southern Cross University, Australia (1997)

