
Evaluating Call-By-Need on the Control Stack

Stephen Chang,? David Van Horn,?? and Matthias Felleisen?

PLT & PRL, Northeastern University, Boston, MA 02115

Abstract. Ariola and Felleisen’s call-by-need λ-calculus replaces a vari-
able occurrence with its value at the last possible moment. To sup-
port this gradual notion of substitution, function applications—once
established—are never discharged. In this paper we show how to trans-
late this notion of reduction into an abstract machine that resolves vari-
able references via the control stack. In particular, the machine uses the
static address of a variable occurrence to extract its current value from
the dynamic control stack .

1 Implementing Call-by-need

Following Plotkin [1], Ariola and Felleisen characterize the by-need λ-calculus
as a variant of β:

(λx.E[x]) V = (λx.E[V]) V ,

and prove that a machine is an algorithm that searches for a (generalized) value
via the leftmost-outermost application of this new reduction [2].

Philosophically, the by-need λ-calculus has two implications:

1. First, its existence says that imperative assignment isn’t truly needed to
implement a lazy language. The calculus uses only one-at-a-time substitu-
tion and does not require any store-like structure. Instead, the by-need β
suggests that a variable dereference is the resumption of a continuation of
the function call, an idea that Garcia et al. [3] recently explored in detail by
using delimited control operations to derive an abstract machine from the
by-need calculus. Unlike traditional machines for lazy functional languages,
Garcia et al.’s machine eliminates the need for a store by replacing heap
manipulations with control (stack) manipulations.

2. Second, since by-need β does not remove the application, the binding struc-
ture of programs—the association of a function parameter with its value—
remains the same throughout a program’s evaluation. This second connection
is the subject of our paper. This binding structure is the control stack, and
thus we have that in call-by-need, static addresses can be resolved in the
dynamic control stack.

? Partially supported by grants from the National Science Foundation.
?? Supported by NSF Grant 0937060 to the CRA for the CIFellow Project.

2 Stephen Chang, David Van Horn, and Matthias Felleisen

Our key innovation is the CK+ machine, which refines the abstract machine
of Garcia et al. by making the observation that when a variable reference is in
focus, the location of the corresponding binding context in the dynamic control
stack can be determined by the lexical index of the variable. Whereas Garcia
et al.’s machine linearly traverses their control stack to find a specific binding
context, our machine employs a different stack organization where indexing can
be used instead of searching. Our machine organization also simplifies the hygiene
checks used by Garia et al., mostly because it explicitly maintains Garcia et al.’s
“well-formedness” condition on machine states, instead of leaving it as a side
condition.

The paper starts with a summary of the by-need λ-calculus and the abstract
textual machine induced by the standard reduction theorem. We then show how
to organize the machine’s control stack so that when the control string is a
variable reference, the machine is able to use the lexical address to compute the
location of the variable’s binding site in the control stack.

2 The Call-by-need λ-calculus, the de Bruijn Version

The terms of the by-need λ-calculus are those of the λ-calculus [4], which we
present using de Bruijn’s notation [5], i.e., lexical addresses replace variables:

M ::= n | λ.M |M M

where n ∈ N. The set of values is just the set of abstractions:

V ::= λ.M

One of the fundamental ideas of call-by-need is to evaluate the argument in
an application only when it is “needed,” and when the argument is needed, to
evaluate that argument only once. Therefore, the by-need calculus cannot use
the β notion of reduction because doing so may evaluate the argument when it is
not needed, or may cause the argument to be evaluated multiple times. Instead,
β is replaced with the deref notion of reduction:

(λ.E[n]) V need (λ.E[V]) V, λ binds n deref

The deref notion of reduction requires the argument in an application to be a
value and requires the body of the function to have a special shape. This special
shape captures the demand-driven substitution of values for variables that is
characteristic of call-by-need. In the deref notion of reduction, when a variable
is replaced with the value V , some renaming may still be necessary to avoid
capture of free variables in V , but for now, we assume a variant of Barendregt’s
hygiene condition for de Bruijn indices and leave all necessary renaming implicit.

Here is the set of evaluation contexts E:

E ::= [] | E M | (λ.E) M | (λ.E′[n]) E

Evaluating Call-By-Need on the Control Stack 3

Like all contexts, an evaluation context is an expression with a hole in the place
of a subexpression. The first evaluation context is an empty context that is just a
hole. The second evaluation context indicates that evaluation of applications pro-
ceeds in a leftmost-outermost order. This is similar to how evaluation proceeds
in the by-name λ-calculus [1]. Unlike call-by-name, however, call-by-need defers
dealing with arguments until absolutely necessary. It therefore demands evalua-
tion within the body of a let-like binding. The third evaluation context captures
this notion. This context allows the deref notion of reduction to search under
applied λs for variables to substitute. The fourth evaluation context explains
how the demand for a parameter’s value triggers and directs the evaluation of
the function’s argument. In the fourth evaluation context, the visible λ binds n
in λ.E′[n]. This means that there are n additional λ abstractions in E′ between
n and its binding λ.

To make this formal, let us define the function ∆ : E → N as:

∆([]) = 0 ∆((λ.E′[n]) E) = ∆(E)
∆(E M) = ∆(E) ∆((λ.E) M) = ∆(E) + 1

With ∆, the side condition for the fourth evaluation context is n = ∆(E′).
Unlike β, deref does not remove the argument from a term when substitu-

tion is complete. Instead, a term (λ.M) N is interpreted as a term M and an
environment where the variable (index) bound by λ is associated with N . Since
arguments are never removed from a by-need term, reduced terms are not nec-
essarily values. In the by-need λ-calculus, reductions produce “answers” a (this
representation of answers is due to Garcia et al. [3]):

a ::= A[V] answers
A ::= [] | (λ.A) M answer contexts

Answer contexts A are a strict subset of evaluation contexts E.
Since both the operator and the operand in an application reduce to answers,

two additional notions of reduction are needed:

(λ.A[V]) M N need (λ.A[V N]) M assoc-L
(λ.E[n]) ((λ.A[V]) M) need (λ.A[(λ.E[n]) V]) M, if ∆(E) = n assoc-R

As mentioned, some adjustments to de Bruijn indices are necessary when
performing substitution in λ-calculus terms. For example, in a deref reduction,
every free variable in the substituted V must be incremented by ∆(E) + 1. Oth-
erwise, the indices representing free variables in V no longer count the number
of λs between their occurrence and their respective binding λs. Similar adjust-
ments are needed for the assoc-L and assoc-R reductions, where subterms are
also pulled under λs.

Formally, define a function ↑ that takes three inputs: a term M , an integer
x, and a variable (index) m, and increments all free variables in M by x, where
a free variable is defined to be an index n such that n ≥ m. In this paper, we
use the notation M↑xm. Here is the formal definition of ↑:

4 Stephen Chang, David Van Horn, and Matthias Felleisen

n↑xm = n+ x, if n ≥ m (M N)↑xm = ((M↑xm) (N↑xm))
n↑xm = n, if n < m λ.M↑xm = λ.(M↑xm+1)

Using the ↑ function for index adjustments, the notions of reduction are:

(λ.E[n]) V need (λ.E[V ↑∆(E)+1
0]) V, if ∆(E) = n deref

(λ.A[V]) M N need (λ.A[V (N↑∆(A)+1
0)]) M assoc-L

(λ.E[n]) ((λ.A[V]) M) need (λ.A[((λ.E[n])↑∆(A)+1
0) V]) M, if ∆(E) = n

assoc-R

It is acceptable to apply the ∆ function to A because A is a subset of E.

3 Standard Reduction Machine

In order to derive an abstract machine from the by-need λ-calculus, Ariola and
Felleisen prove a Curry-Feys-style Standardization Theorem. Roughly, the the-
orem states that a term M reduces to a term N in a canonical manner if M
reduces to N in the by-need calculus.

The theorem thus determines a state machine for reducing programs to an-
swers. The initial state of the machine is the program, the collection of states is
all possible programs, and the final states are answers. Transitions in the state
machine are equivalent to reductions in the calculus:

E[M] 7−→need E[M ′], if M need M ′

where E represents the same evaluation contexts that are used to define the
demand-driven substitution of variables in the deref notion of reduction.

The machine is deterministic because all programs M satisfy the unique de-
composition property. This means that M is either an answer or can be uniquely
decomposed into an evaluation context and a redex. Hence, we can use the state
machine transitions to define an evaluator function:

evalneed(M) =

{
a, if M 7−→→need a

⊥, if for all M 7−→→need N , N 7−→need L

Lemma 1. evalneed is a total function.

Proof. The lemma follows from the standard reduction theorem [2]. ut

4 The CK+ Machine

A standard reduction machine specifies evaluation steps at a high-level of ab-
straction. Specifically, at each evaluation step in the machine, the entire program
is partitioned into an evaluation context and a redex. This repeated partition-
ing is inefficient because the evaluation context at any given evaluation step

Evaluating Call-By-Need on the Control Stack 5

tends to share a large common prefix with the evaluation context in the previ-
ous step. To eliminate this inefficiency, Felleisen and Friedman propose the CK
machine [6, Chapter 6], an implementation for a standard reduction machine of
a call-by-value language. Consider the following call-by-value evaluation:

((λw.w) ((λx.(x ((λy.y) λz.z))) λx.x))

7−→v ((λw.w) ((λx.x) ((λy.y) λz.z)))

7−→v ((λw.w) ((λx.x) λz.z))

7−→v ((λw.w) λz.z)

7−→v λz.z

In each step, the βv redex is underlined. The evaluation contexts for the first and
third term are the same, ((λw.w) []), and it is contained in the evaluation context
for the second term, ((λw.w) ((λx.x) [])). Although the evaluation contexts in
the first three terms have repeated parts, a standard reduction machine for the
call-by-value calculus must re-partition the program at each evaluation step.

The CK machine improves upon the standard reduction machine for the
by-value λ-calculus by eliminating redundant search steps. While the standard
reduction machine uses whole programs as machine states, a state in the CK ma-
chine is divided into separate subterm (C) and evaluation context (K) registers.
More precisely, the C in the CK machine represents a control string, i.e., the
subterm to be evaluated, and the K is a continuation, which is a data structure
that represents an evaluation context in an “inside-out” manner. The original
program can be reconstructed from a CK machine state by “plugging” the ex-
pression in the C subterm register into the context represented by K. When the
control string is a redex, the CK machine can perform a reduction, just like the
standard reduction machine. Unlike the standard reduction machine though, the
CK machine still remembers the previous evaluation context in the context reg-
ister and can therefore resume the search for the next redex from the contractum
in C and the evaluation context in K.

4.1 CK+ Machine States

We introduce the CK+ machine, a variant of the CK machine, for the by-need
λ-calculus. The CK+ machine is also a modification of the abstract machine
of Garcia et al. [3]. The machine states for the CK+ machine are specified in
figure 1. The core CK+ machine has three main registers, a control string (C),
a “renaming” environment (R), and a continuation stack (K̄).

In figure 1, the . . . notation means “zero or more of the preceeding element”
and in the stack ‖k, K, . . .‖, the partial stack frame k is the top of the stack.
The initial CK+ machine state is 〈M, (), ‖mt‖〉, where M is the given program,
() is an empty renaming environment, and ‖mt‖ is a stack with just one element,
an empty frame.

6 Stephen Chang, David Van Horn, and Matthias Felleisen

S, T ::=
〈
C,R, K̄

〉
machine states

C ::= M control strings

R ::= (i, . . .) renaming environments

i ∈ N offsets

K̄ ::= ‖k, K, . . .‖ continuation stacks

K ::= (bindM R k) complete stack frames

k ::= mt | (argM R k) | (op K̄ k) partial stack frames

Fig. 1. CK+ machine states.

4.2 Renaming Environment

As mentioned in section 2, substitution requires some form of renaming, which
manifests itself as lexical address adjustments when using a de Bruijn repre-
sentation of terms. Instead of adjusting addresses directly, the CK+ machine
delays the adjustment by keeping track of offsets for all free variables in the con-
trol string in a separate renaming environment. The delayed renaming is forced
when a variable occurrence is evaluated, at which point the offset is added to
the variable before it is used to retrieve its value from the control stack.

Here we use lists for renaming environments and the offset corresponding to
variable n, denoted R(n), is the n-th element in R (0-based). The : function is
cons, and the function M⇐R applies a renaming environment R to a term M ,
yielding a term like M except with appropriately adjusted lexical addresses:

M⇐() = M

n⇐R = n+R(n)
(λ.M)⇐R = λ.(M⇐(0 :R))

(M N)⇐R = ((M⇐R) (N⇐R))

Because the CK+ machine uses renaming environments, the ↑ function from
section 2 is replaced with an operation on R. When the machine needs to incre-
ment all free variables in a term, it uses the ⊕ function to increment all offsets in
the renaming environment that accompanies the term. The notation R⊕x means
that all offsets in renaming environment R are incremented by x. Thus, the use
of indices in place of variables enables hygiene maintenance through simple in-
crementing and decrementing of the indices. As a result, we have eliminated the
need to keep track of the “active variables” that are present in Garcia et al.’s
machine [3, Section 4.5].

4.3 Continuations and the Continuation Stack

Like the CK machine, the CK+ machine represents evaluation contexts as con-
tinuations. The [] context is represented by the mt continuation. An evaluation

Evaluating Call-By-Need on the Control Stack 7

context E[([] N)] is represented by a continuation (argM R k) where k repre-
sents E and (M⇐R) = N . An evaluation context E[(λ.[]) N] is represented by
a continuation (bind M R k) where k represents E and (M⇐R) = N . Finally,
the E[(λ.E′[n]) []] context is represented by an (op K̄ k) continuation. The E′

under the λ in the evaluation context is represented by the nested K̄ stack in
the continuation and the E surrounding the evaluation context corresponds to
the k in the continuation. The op continuation does not need to remember the n
variable in the evaluation context because the variable can be derived from the
length of K̄.

The contents of the K̄ register represent the control stack of the program
and we refer to an element of this stack as a frame. The key difference between
the CK+ machine and Garcia et al.’s machine is in the organization of the
frames of the stack. Instead of a flat list of frames like in Garcia et al.’s machine,
our control stack frames are groups of nested continuations of a special shape.
Thus we also call our control stack a “continuation stack.” We use two kinds of
frames, partial and complete. The first frame in the continuation stack is always
a partial one, while all others are complete. The outermost continuation of a
complete frame is a bind and all other nested pieces of a complete frame are op,
arg, or mt. Thus, not counting the first partial frame, there is exactly one frame
in the control stack for every bind continuation in the program. As a result, the
machine can use a variable (lexical address) n to find the bind corresponding to
that variable in the control stack.

4.4 Maintaining the Continuation Stack

Each frame of the control stack, with the exception of the top frame, has the
shape (bind M R k), where k is a partial frame that contains no additional
bind frames. In order for the continuation stack to maintain this invariant, CK+
machine transitions must adhere to two conditions:

1. When a machine transition is executed, only the top partial frame of the
stack is updated unless the instruction descends under a λ.

2. If a machine transition descends under a λ, the partial frame on top of the
stack is completed and a new mt partial frame is pushed onto the stack.

Essentially, the top frame in the stack “accumulates context” until a λ is
encountered, at which time the top partial frame becomes a complete frame.
Maintaining evaluation contexts for the program in this way implies a major
consequence for the CK+ machine:

when the control string is a variable n, then the binding for n is (n +
R(n) + 1) stack frames away.

4.5 Relating Machine States to Terms

Figure 2 defines the ϕ function, which converts machine states to λ-terms. It uses
the M⇐R function to apply the renaming environment to the control string and

8 Stephen Chang, David Van Horn, and Matthias Felleisen

ϕ(
〈
M,R, K̄

〉
) = K̄[M⇐R]

‖k, K, . . .‖ [M] = . . . [K[k[M]]]

mt[M] = M
(arg N R k)[M] = k[(M (N⇐R))]

(op K̄ k)[M] = k[(λ.K̄[len(K̄)− 1]) M]
(bind N R k)[M] = k[(λ.M) (N⇐R)]

Fig. 2. ϕ converts CK+ machine states to λ-calculus terms.

then uses a family of “plug” functions, dubbed ·[·], to plug the renamed control
string into the hole of the context represented by the continuation component of
the state. Figure 2 also defines these plug functions, where K[M] yields the term
obtained by plugging M into the context represented by K, and K̄[M] yields
the term when M is plugged into the context represented by the continuation
stack K̄.

4.6 CK+ Machine State Transitions

Figure 3 shows the first four state transitions for the CK+ machine. The ++
notation indicates an “append” operation for the continuation stack. Since the
purpose of the CK+ machine is to remember intermediate states in the search
for a redex, three of the first four rules are search rules. They shift pieces of the
control string to the K̄ register. For example, the [shift-arg] transition shifts the
argument of an application to the K̄ register.

7−→ck+

[shift-arg]
〈(M N), R, ‖k, K, . . .‖〉 〈M,R, ‖(arg N R k), K, . . .‖〉

[descend-λ]
〈λ.M,R, ‖(arg N R′ k), K, . . .‖〉 〈M, 0:R, ‖mt, (bind N R′ k), K, . . .‖〉

[lookup-arg]〈
n,R, K̄++‖(bind N R′ k), K, . . .‖

〉 〈
N,R′,

∥∥(op K̄ k), K, . . .
∥∥〉

where len(K̄) = n+R(n) + 1
[resume]〈

V,R,
∥∥(op K̄ k), K, . . .

∥∥〉 〈
V,R′, K̄++‖(bind V R k), K, . . .‖

〉
where R′ = R⊕ len(K̄)

Fig. 3. State transitions for the CK+ machine.

Evaluating Call-By-Need on the Control Stack 9

The [descend-λ] transition shifts a λ binding to the K̄ register. When the
control string in the CK+ machine is a λ abstraction, and that λ is the operator
in an application term—indicated by an arg frame on top of the stack—the body
of the λ becomes the control string; the top frame in the stack is updated to be
a complete bind frame; and a new partial mt frame is pushed onto the stack.

The [descend-λ] instruction also updates the renaming environment which, as
mentioned, is a list of numbers. There is one offset in the renaming environment
for each bind continuation in the control stack and the offsets in the renaming
environment appear in the same order as their corresponding bind continuations.
When the machine descends into a λ expression, a new bind continuation is
added to the top of the control stack so a new corresponding offset is also added
to the front of the renaming environment. Since offsets are only added to the
renaming environment when the machine goes under a λ, whenever a variable n
(a lexical address) becomes the control string, its renaming offset is located at
the n-th position in the renaming environment. A renaming offset keeps track
of the relative position of a bind continuation since it was added to the control
stack so a [descend-λ] instruction adds a 0 offset to the renaming environment.

When the control string is a variable n, the binding for n is accessed from
the continuation stack by accessing the (n+R(n)+1)-th frame in the stack. The
[lookup-arg] instruction moves the argument that is bound to the variable into
the control string register. The op frame on top of the stack is updated to store
all the frames inside the binding λ, in the same order that they appear in the
stack. Using this strategy, the machine can “jump” back to this context after
it is done evaluating the argument. For a term (λ.E[n]) M , this is equivalent
to evaluating M while saving E and then returning to the location of n after
the argument M has been evaluated. Note that the [lookup-arg] transition does
not perform substitution. The argument has been copied into the control string
register, but it has also been removed from the continuation stack register.

When the frame on top of the stack is an op, it means the current control
string is an argument in an application term. When that argument is a value,
then a redex has been found and the value should be substituted for the variable
that represents it. The [resume] rule is the only rule in figure 3 that performs
a reduction in the sense of the by-need calculus. It is the implementation of
the deref notion of reduction from the calculus. Specifically, the [resume] rule
realizes this substitution by restoring the frames in the op frame back into the
continuation stack as well as copying the value into a new bind frame. The result
is nearly equivalent to the left hand side of the [lookup-arg] rule except that the
argument has been evaluated and has been substituted for the variable.

Since the [resume] rule performs substitution, it must also update the renam-
ing environment. Hence, the distance between V and its binding frame is added
to every offset in the renaming environment R, as indicated by R⊕ len(K̄). In
other words, each offset in the environment is being incremented by the number
of bind continuations that are added to the control stack.

In summary, the four rules of figure 3 represent intermediate partitions of the
program into a subterm and an evaluation context before a partitioning of the

10 Stephen Chang, David Van Horn, and Matthias Felleisen

program into an evaluation context and a deref redex is found. As a result, the
CK+ machine does not need to repartition the entire program on every machine
step and is therefore more efficient than standard reduction. To complete the
machine now, we must make it deal with answers.

4.7 Dealing with Answers

The CK+ machine described so far has no mechanism to identify whether a
control string represents an answer. The by-need calculus, however, assumes
that it is possible to distinguish answers from terms on several occasions, one of
which is the completion of evaluation. To efficiently identify answers, the CK+
machine uses a fourth “answer” register. The CK+ machine identifies answers
by searching the continuation stack for frames that are answer contexts. To
distinguish answer contexts from evaluation contexts, we characterize answer
contexts in figure 4. A final machine state has the form

〈
V,R, ‖ ‖ , Ā

〉
.

S, T ::=
〈
C,R, K̄

〉
|

〈
V,R, ‖F, . . . , K, . . .‖ , Ā

〉
machine states

F ::= (bindM R mt) answer (complete) frame

Ā ::= ‖mt, F, . . .‖ answer stacks

Fig. 4. CK+ machine answer states.

When the control string is a value V and mt is the topmost stack frame, then
some subterm in the program is an answer. In this situation, the mt frame in the
stack is followed by an arbitrary number of F frames. The machine searches for
the answer by shifting mt and F frames from the continuation stack register to
the answer register. The machine continues searching until either a K frame is
seen or the end of the continuation stack is reached. If the end of the continuation
stack is reached, the entire term is an answer and evaluation is complete.

The presence of a K frame means an assoc-L or an assoc-R redex has been
found. In order to implement these shifts, the CK+ machine requires four ad-
ditional rules for handling answers, as shown in figure 5. The [ans-search1] rule
shifts the mt frame to the answer register. The [ans-search2] rule shifts F frames
to the answer register. The [assoc-L] rule and the [assoc-R] rule roughly corre-
spond to the assoc-L and assoc-R notions of reduction in the calculus, respec-
tively. The rules are optimized versions of corresponding notions of reduction
in the calculus because the transition after the reduction is always known. The
[assoc-L] machine rule performs the equivalent of an assoc-L reduction in the
calculus, followed by a [descend-λ] machine transition. The [assoc-R] machine
rule performs the equivalent of an assoc-R reduction in the calculus, followed by
a [resume] machine transition.

Evaluating Call-By-Need on the Control Stack 11

7−→ck+

[ans-search1]
〈V,R, ‖mt, K, . . .‖〉 〈V,R, ‖K, . . .‖ , ‖mt‖〉

[ans-search2]
〈V,R, ‖F ′, K, . . .‖ , ‖mt, F, . . .‖〉 〈V,R, ‖K, . . .‖ , ‖mt, F, . . . , F ′‖〉

[assoc-L]
〈λ.M ′, R, ‖(bindM R′ (arg N R′′ k)), K, . . .‖ , ‖mt, F, . . .‖〉

〈M ′, 0:R, ‖mt, (bind N R′′′ mt), F, . . . , (bindM R′ k), K, . . .‖〉
where R′′′ = R′′ ⊕ len(‖F, . . .‖) + 1

[assoc-R]〈
V,R,

∥∥(bindM R′ (op K̄ k)), K, . . .
∥∥ , ‖mt, F, . . .‖〉〈

V,R′′, K̄′++‖(bind V R mt), F, . . . (bindM R′ k), K, . . .‖
〉

where K̄′ = K̄ ⊕ len(‖F, . . .‖) + 1, and R′′ = R⊕ len(K̄′)

Fig. 5. Transitions of the CK+ machine that handle answer terms.

In figure 5, the function ⊕ has been extended to a family of functions de-
fined over renaming environments, continuation stacks, and stack frames: R⊕ x
increments every offset in the renaming environment R by x and the function
K̄ ⊕ x increments every offset in every renaming environment in every frame in
K̄ by x. The function len(‖F, . . .‖) returns the number of frames in ‖F, . . .‖.
Maintaining the offsets in this manner is equivalent to obeying Garcia et al.’s
“well-formedness” condition on machine states.

4.8 Correctness

Correctness means that the standard reduction machine and the CK+ machine
define the same evaluator functions. Let us start with an appropriate definition
for the CK+ machine:

evalck+(M) =


a, if 〈M, (), ‖mt‖〉 7−→→ck+

〈
V,R, ‖ ‖ , Ā

〉
,

where a = ϕ(
〈
V,R, ‖ ‖ , Ā

〉
)

⊥, if for all 〈M, (), ‖mt‖〉 7−→→ck+ S, S 7−→ck+ T

Recall that the function ϕ converts CK+ machine states to λ-calculus terms
(figure 2). Here, ϕ has been extended to handle “answer” machine states:

ϕ(
〈
M,R, K̄, Ā

〉
) = K̄[Ā[M⇐R]]

12 Stephen Chang, David Van Horn, and Matthias Felleisen

The desired theorem says that the two eval functions are equal.

Theorem 1. evalneed = evalck+.

To prove the theorem, we first establish some auxiliary lemmas on the totality
of evalck+ and the relation between CK+ transitions and standard reduction
transitions.

Lemma 2. evalck+ is a total function.

Proof. The lemma is proved via a subject reduction argument. ut

The central lemma uses ϕ to relate CK+ machine transitions to reductions.

Lemma 3. For all CK+ machine states S and T , if S 7−→ck+ T , then either
ϕ(S) 7−→need ϕ(T) or ϕ(S) = ϕ(T).

Proof. We proceed by case analysis on each machine transition, starting with
[resume]. Assume〈

V,R,
∥∥(op K̄ k), K, . . .

∥∥〉 7−→ck+〈
V,R⊕ len(K̄), K̄++‖(bind V R k), K, . . .‖

〉
,

then let

M1 = ϕ(
〈
V,R,

∥∥(op K̄ k), K, . . .
∥∥〉)

= ‖K, . . .‖ [k[(λ.K̄[len(K̄)− 1]) (V⇐R)]]

M2 = ϕ(
〈
V,R⊕ len(K̄), K̄++‖(bind V R k), K, . . .‖

〉
)

= ‖K, . . .‖ [k[(λ.K̄[V⇐(R⊕ len(K̄))]) (V⇐R)]] .

Since M1 is a standard deref redex, we have:

‖K, . . .‖ [k[(λ.K̄[len(K̄)− 1]) (V⇐R)]] 7−→need

‖K, . . .‖ [k[(λ.K̄[(V⇐R)↑len(K̄)
0]) (V⇐R)]]

To conclude that M1 7−→need M2 by the deref notion of reduction, we need to
show:

(V⇐R)↑len(K̄)
0 = V⇐(R⊕ len(K̄))

Lemma 4 proves the general case for this requirement. Therefore, we can conclude
that M1 7−→need M2. The proofs for [assoc-L] and [assoc-R] are similar.

As for the remaining instructions, they only shift subterms/contexts back
and forth between registers, so the proof is a straightforward calculation. ut

Lemma 4. ∀R,R1, R2, where R = R1++R2 and m = len(R1):

(M⇐R)↑xm= M⇐(R1++(R2 ⊕ x))

Proof. By structural induction on M . ut

Evaluating Call-By-Need on the Control Stack 13

Using lemma 3, the argument to prove our main theorem is straightforward.

Proof (of Theorem 1). We show evalck+(M) = a ⇐⇒ evalneed(M) = a.
The left-to-right direction follows from the observation that for all CK+

machine starting states S and final machine states Sfinal , if S 7−→→ck+ Sfinal ,
then M 7−→→need a, where ϕ(Sfinal) = a. This is proved using lemma 3 and
induction on the length of the 7−→→ck+ sequence.

The other direction is proved by contradiction. Assume evalneed(M) = a 6=
⊥ and evalck+(M) 6= a. Since evalck+ is a total function, either:

1. 〈M, (), ‖mt‖〉 7−→→ck+ Sfinal , where ϕ(Sfinal) 6= a, or
2. the reduction of 〈M, (), ‖mt‖〉 diverges.

It follows from the left-to-right direction of the theorem that, in the first
case, evalneed(M) = ϕ(Sfinal) 6= a, and in the second case, evalneed(M) = ⊥.
However, evalneed(M) = a was assumed and evalneed is a total function, so a
contradiction has been reached in both cases. Since none of the cases are possible,
we conclude that if evalneed(M) = a, then evalck+(M) = a. ut

5 Stack Compacting

Because the by-need λ-calculus does not substitute the argument of a function
call for all occurrences of the parameter at once, applications are never removed.
In the CK+ machine, arguments accumulate on the stack and remain there
forever. For a finite machine, an ever-growing stack is a problem. In this section,
we explain how to compact the stack.

To implement a stack compaction algorithm in the CK+ machine, we in-
troduce a separate SC machine which removes all unused stack bindings from
a CK+ machine state. Based on the SC machine, the CK+ machine can be
equipped with a non-deterministic [sc] transition:〈

M,R, K̄
〉
7−→ck+

〈
M,R′, K̄ ′〉 [sc]

where
〈
(FVM R 0), (M,R), K̄, ‖ ‖

〉
7−→→sc

〈
F , (M,R′), ‖ ‖ , K̄ ′〉

Figure 6 presents the SC machine. In this figure, FV refers to a family of
functions that extracts the set of free variables from terms, stack frames, and
continuation stacks. The function FV takes a term M , a renaming environment
R and a variable m, and extracts free variables from M , where a free variable
is defined to be all n such that n + R(n) ≥ m. The function FV is similarly
defined for stack frames and continuation stacks. In addition, F−− denotes
the set obtained by decrementing every element in F by one. Finally, K̄@k
represents a frame merged appropriately into a continuation stack. For exam-
ple, ‖k′, K, . . . , (bindM R k′′)‖@k = ‖k′, K, . . . , (bindM R k′′)@k‖, where
(bindM R k′′)@k = (bindM R k′′@k), and so on, until finally mt@k = k.

Also in figure 6, ↑↑ denotes a family of functions that adjusts the offsets
in renaming environments to account for the fact that a λ has been removed

14 Stephen Chang, David Van Horn, and Matthias Felleisen

Ssc ::=
〈
F , (M,R), K̄, K̄

〉
machine states

F ::= {n, . . .} set of free variables

K̄ ::= ‖k, K, . . .‖ | ‖K, . . .‖ partial stacks

7−→sc

[shift-partial-frame]
〈F , (M,R), ‖k, K, . . .‖ , ‖ ‖〉 〈F ∪ (FV k 0), (M,R), ‖K, . . .‖ , ‖k‖〉

[shift-complete-frame]
〈F , (M,R), ‖K′, K, . . .‖ , ‖k, K′′, . . .‖〉 〈F ′, (M,R), ‖K, . . .‖ , ‖k, K′′, . . . , K′‖〉
0 ∈ F where F ′ = (F−−) ∪ (FV K′ 0)

[pop-frame]〈
F , (M,R), ‖(bindM R k), K, . . .‖ , K̄

〉 〈
F−−, (M,R′), ‖K, . . .‖ , K̄′@k

〉
0 /∈ F where R′ = (M,R)↑↑−1

len(K̄)−1

and K̄′ = K̄↑↑−1
len(K̄)−1

Fig. 6. The SC machine.

from the term. If a variable n refers to a bind stack frame that is deeper in the
stack than the frame that is removed, then the offset for that variable needs to
be decremented by one. A variable n refers to a bind that is deeper than the
removed frame if n+R(n) is greater than the depth of the removed frame. The
↑↑ function can be applied to renaming environments directly or to continuation
stacks or stack frames that contain renaming environments. We use the notation
(M,R)↑↑x` to mean that the offsets in R are incremented by x for all variables n
in M where n+R(n) > `. The result of (M,R)↑↑x` is a new renaming environment
with the adjusted offsets. The notation K̄↑↑x` means that the offsets for all M
and R pairs in the continuation stack K̄ are adjusted. K̄↑↑x` evaluates to a new
continuation stack that contains the adjusted renaming environments.

6 Related Work and Conclusion

The call-by-need calculus is due to Ariola et al. [2, 7, 8]. Garcia et al. [3] derive an
abstract machine for Ariola and Felleisen’s calculus and, in the process, uncover
a correspondence between the by-need calculus and delimited control operations.
Danvy et al. [9] derive a machine similar to Garcia et al. by applying “off-the-
shelf” transformations to the by-need calculus. Danvy and Zerny’s def-use chains
also share similarities with our control stack structure [10].

Our paper has focused on the binding structure of call-by-need programs
implied by Ariola and Felleisen’s calculus. We have presented the CK+ ma-

Evaluating Call-By-Need on the Control Stack 15

chine, which restructures the control stack of Garcia et al.’s machine, and we
have shown that lexical addresses can be used to directly access binding sites for
variables in this dynamic control stack, a first in the history of programming lan-
guages. The use of lexical addresses has also simplified hygiene maintenance by
eliminating the need for the set of “active variables” that is present in Garcia et
al.’s machine states. In addition, we show how using indices in place of variables
allows for simple maintenance of Garcia et al.’s “well-formed” machine states.
Finally, we have presented a stack compaction algorithm, which is used in the
CK+ machine to prevent stack overflow. The compaction algorithm used in this
paper is a restriction of the more general garbage collection notion of reduction
of Felleisen and Hieb [11] and is also reminiscent of Kelsey’s work [12].

Acknowledgments. Thanks to the anonymous reviewers for their feedback
and to Daniel Brown for inspiring discussions.

References

1. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science 1 (1975) 125–159

2. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. Journal of Functional
Programming 7 (1997) 265–301

3. Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control.
In: Proceedings of the 36th Annual Symposium on Principles of Programming
Languages, ACM (2009) 153–164

4. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland
(1981)

5. De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (1972) 381–392

6. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press (2009)

7. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: Proceedings of the 22nd Annual Symposium on Principles on
Programming Languages. (1995) 233–246

8. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. Journal
of Functional Programming 8 (1998) 275–317

9. Danvy, O., Millikin, K., Munk, J., Zerny, I.: Defunctionalized interpreters for
call-by-need evaluation. In Blume, M., Vidal, G., eds.: 10th International Sympo-
sium on Functional and Logic Programming. Lecture Notes in Computer Science,
Springer (2010)

10. Danvy, O., Zerny, I.: Three syntactic theories for combinatory graph reduction. In
Alpuente, M., ed.: 20th International Symposium on Logic-Based Program Syn-
thesis and Transformation. (2010) Invited talk.

11. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103 (1992) 235–271

12. Kelsey, R.: Tail-recursive stack disciplines for an interpreter. Technical Report
NU-CCS-93-03, Northeastern University (1993)

